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Abstract. Physical arguments are presented to show that the Hall anomaly is an effect of
the vortex many-body correlation rather than that of an individual vortex. Quantitatively, the
characteristic energy scale in the problem, the vortex vacancy formation energy, is obtained for
thin films. At low temperatures a scaling relation between the Hall and longitudinal resistivities
is found, with the power depending on sample details. Near the superconducting transition
temperature and for small magnetic fields the Hall conductivity is found to be proportional to
the inverse of the magnetic field and to the quadratic of the difference between the measured
and the transition temperatures.

The ubiquitous occurrence of the Hall anomaly in the mixed state of both conventional and
oxide superconductors, the sign change of the Hall resistivity below the superconducting
transition temperature and the smallness of the Hall angle, has defied a consistent explanation
so far [1]. A straightforward application of the Magnus force cannot explain this
phenomenon. This failure leads to the frustration of questioning the Magnus force as the only
transverse force in the vortex dynamic equation. The transverse force has been subsequently
modified into various forms [2]. Following the general properties of a superconductor, on
the other hand, recent theoretical work on vortex dynamics has shown that there is no
transverse force other than the Magnus force, a result of the topological constraint and the
momentum conservation [3, 4]. One can further show that the Magnus force is equivalent
to the spectral flow process [5]. An apparent conflict between the theoretical reasonings
and the experimental measurements naturally arises.

In this letter we attempt to solve this puzzle by showing that the Hall anomaly can be
understood based on the vortex vacancy motion in a pinned vortex lattice, and emphasize
that the anomaly is a property of the vortex many-body correlation rather than that of an
individual vortex. We will demonstrate that vacancies can have the lowest energy scale,
and that they dominate the thermal activation contributions to the vortex motion at low
temperatures. The present vacancy model for the Hall anomaly is also consistent with
other measurement such as the Nernst effect. In the following we present our arguments
leading to the model, and discuss its predictions and validity conditions. For simplicity,
we will consider an isotropics-pairing superconductor with one type of charge carrier in
two dimension. In this situation vortices (or straight vortex lines) can be viewed as point
particles [6].

The vortex dynamic equation for aj th vortex of unit length in the sample takes the
form of the Langevin equation identical to that of a charged particle in the presence of a
magnetic field:

mr̈j = q ρs
2
h(vs,t − ṙj )× ẑ− ηṙj + Fp + f (1)
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with an effective unit length massm, a pinning forceFp, a vortex viscosityη, and a
fluctuating forcef . In equation (1)q = ±1 is the vorticity,h the Planck constant,ρs the
superfluid electron number density at temperatureT , andẑ the unit vector inz-direction. If
there is a temperature gradient, the thermal forceFT = −sφ∇T should be added in at the
right hand of equation (1), withsφ the entropy carried by a vortex. The term associated with
the total superconducting electron velocityvs,t = vs +vs,in and the vortex velocitẏr at the
right side of equation (1) is the Magnus force. Althoughvs,t is due to all other vortices,
here we split it into two parts, withvs corresponding to the rearrangement of vortices due to
the externally applied supercurrent andvs,in accounting for the rest contribution describing
the vortex interaction without external current. In the following we will assumevs is small
such that this splitting is valid.

It is evident that in the mixed state of any real superconductor the many-body correlation
between vortices and the pinning effect cannot be ignored. The competition between them
is the source of the rich static and dynamical properties of flux phases [7, 8]. We will
take the Abrikosov lattice as the known manifestation of the many-body correlation for
the starting point to advance our arguments. The vortex pinning is also important in our
reasoning, though several quantitative results obtained below do not explicitly depend on it.
If there were no pinning for vortices, the whole vortex lattice would move together under
the influence of an externally applied current in the same manner as that of independent
vortices. Hence, one would get the same sign of the Hall resistivity in both superconducting
and normal states. In the presence of pinning centres in the sample as well as the edge
pinning, the vortex lattice will be pinned down. In such a situation the motion of the vortex
lattice is made possible by various kinds of defect motions due to thermal fluctuations. We
will argue below that at low temperatures the dominant contribution to the motion is due
to vortex vacancies, and the Hall anomaly occurs.

For two vortices separated by a distancer, which is less than the effective magnetic
screening lengthλ⊥ = λ2

L/d(d < λL, λ⊥ = λL if d > λL) but greater thanξ0, the interaction
potential isV0(r) = 2d(80/4πλL)2 ln(r/ξ0) [7]. Here λ2

L = m∗c2/8πρse2 is the London
penetration depth,m∗ the effective mass of a Cooper pair,ξ0 the coherence length of the
superconductor, andd the thickness of the superconductor film. The energy scaleε0 ≡
d(80/4πλL)2 sets both the scale for the strength of vortex interaction and the scale for the
strength of a strong pinning centre. The energy for a dislocation pair separated by a distance
larger than the vortex lattice constant is given byVd(r) = (ε0/2

√
3π) ln(r/a0) [9, 7], with

a0 an order of the the vortex lattice constant. The energy scaleε0/2
√

3π for the dislocation
pair here is about ten times smaller thanε0 for the vortex interaction and pinning centres.
It is energetically favourable to have dislocation pairs in the lattice. Hence, for temperature
T � ε0 we can ignore the contribution from the vortices hopping out of pinning centres and
the creation of vortex–antivortex pairs. The vortex lattice is then effectively pinned down.
Because vacancies and interstitials can be viewed as the smallest dislocation pairs [11], we
immediately have the estimated energy scale for vacancy formation energyεv as, by putting
r ∼ 2a0 in Vd(r),

εv ∼ 1

2
√

3π

(
80

4πλL

)2

d. (2)

This result is valid for an intermediate magnetic fieldB: Hc1 < B < Hc2/2. For thicker
films the thickness in equation (2) will be replaced by a crossover thicknessdc due to the
z-direction correlation, whose precise value is a complex and unknown function of various
parameters such as the magnetic field, the pinning, the temperature, and anisotropy. In the
casedc is finite, its estimation in the high magnetic field limit is as follows. Ring type
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vacancy excitations are possible in thicker films. Its energy scale is determined by the
smallest ring, which should be the size of the vortex lattice constant. In this casedc is an
order of the vortex lattice constant,dc ∼ a0. However, because of the large anisotropy in the
HTcS materials,dc can be the order of the CuO layer spacing close to the superconducting
transition temperatureTc0.

It is clear from the above analysis that vacancies and interstitials have the lowest
excitation energy scales. We note that the value in equation (2) is consistent with the
variational and numerical calculations [12], with about a factor 2 smaller, and also with the
estimation from the dislocation core energy [13]. Using the shear modulus results forB 6
Hc1 [7] andHc2/2< B 6 Hc2 [9, 7] we have obtained the corresponding vacancy formation
energies as(2/9π)1/2(b0/λL)

3/2e−b0/λLε0 with b2
0 = 80/B, and 0.7/

√
3π(1− B/Hc2)2ε0,

respectively.
Now we argue that the vacancy formation energy is even lower than that of an

interstitial. The experimental observations at low magnetic fields have shown the abundance
of vacancies comparing with interstitials [14]. The natural explanation is that the the
vacancy formation energy is lower than that of interstitials, therefore by thermal fluctuations
vacancies have a higher density. The theoretical calculations have also confirmed the lower
vacancy formation energy [15]. This phenomenon of the vacancy formation energy is lower
than that of interstitials has also been observed in other crystalline structures [11]. We
conclude that vacancies will dominate thermal fluctuation contributions to resistivities at
low enough temperatures for low magnetic fields [16].

We show next that in the pinned vortex lattice a vacancy behaves as a vortex with a
vorticity −q and an interstitial as a vortex with+q, respectively. Letu be the displacement
vector at positionr, with a point defect, vacancy or interstitial, atr0. According to
equation (1) the transverse force acting on the defect is, measured from the pinned perfect
vortex lattice,

F d
M = q

ρs

2
h

∫
d2rδρ(r)(vs − u̇)× ẑ. (3)

Here the vortex densityδρ deviated from a perfect lattice is determined by the dilatation
∇ · u: δρ =∇ · u/S0, with S0 the area of a unit cell in the vortex lattice. By definition,

∇ · u = ∓S0δ
2(r − r0) (4)

with ‘−’ for a missing vortex, a vacancy, and ‘+’ for an extra vortex, an interstitial. Using
equations (3) and (4), we have the desired transverse force on the defect as

F d
M = ∓q

ρs

2
h(vs − ṙ0)× ẑ. (5)

This is identical to the dynamics of a hole or a particle in a semiconductor in the presence of
a magnetic field, with a pinned perfect vortex lattice as a filled valence band and a vacancy
in real space as a hole in the energy space. Equation (5) shows that both a vacancy and
an interstitial will move along the direction of the applied supercurrentvs . This implies
that vortices defining vacancies move against the direction ofvs , a result of the many-
body correlation and pinning. This leads us to our main conclusion that at low enough
temperatures the sign of the Hall resistivity is different from its sign in the normal state
because of the dominance of vacancies. Quantitatively, vacancies and interstitials may be
considered as independent particles moving in the periodic potential formed by the vortex
lattice and a random potential due to the residue effect of pinnings. The potential height of
the periodic potential as well as that of the random potential is an order ofεv. Assuming
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the vacancy (interstitial) densitynv(ni) in a steady state, the longitudinal resistivity is

ρxx = h

2e2

∑
l=v,i

ηlρsh/2

η2
l + (ρsh/2)2

nl

ρs
(6)

and the Hall resistivity

ρyx = h

2e2

∑
l=v,i

ql
(ρsh/2)2

η2
l + (ρsh/2)2

nl

ρs
(7)

with qv = −q andqi = q. Hereηv,i are the effective vacancy and interstitial viscosities,
related to their diffusion constants in the periodic potential due to the vortex lattice by the
Einstein relation between the diffusion constant and the mobility. It should be pointed out
that contributions of other vortex motions to resistivities such as vortex–antivortex pairs,
which are omitted here for their smaller activation probabilities, are additional to those
of vacancies, and that the including of the normal fluid (quasiparticle) contributions is
straightforward [17].

Under the driving of a temperature gradient, the effective thermal force felt by a vacancy
is opposite in sign to the force felt by an interstitial or a vortex in direction but equal
in magnitude,F v

T = +sφ∇T . This can be seen by repeating the demonstration from
equations (3) to (5). Then the Nernst effect due to vacancies has the same sign as that of
vortices or interstitials. Therefore our model gives that in the Hall anomaly regime there is
no sign change for the Nernst effect, and furthermore, the Nernst effect is more pronounced
because of the additive contributions due to both vacancies and interstitials. This is in
agreement with the experimental observations [17].

Before exploring of consequences of equations (6) and (7) we discuss the qualitative
implications of the present model. In the above picture, to obtain a maximum contribution
of vacancies, we need the vortex lattice to define vacancies and sufficiently strong pinnings
to prevent the sliding of the vortex lattice. The existence of a whole lattice structure is
nevertheless unnecessary. Sufficiently large local crystalline structures, like lattice domains,
will be enough to define vacancies. Therefore vacancy-like excitations in a vortex liquid
state can exist, because of the presence of large local orderings. Whether or not this is also
true for a vortex glass state depends upon the details. For example, a further lowering of
temperature may quench a vortex system into a glass state with no local crystalline structure.
Then vacancies will disappear and the sign of the Hall resistivity will change again. On the
other hand, for a fixed temperature if the pinning is too strong, for example, the (random)
pinning centre density is much larger than the vortex density, vortices will be individually
pinned down and the local lattice structure required for the formations of vacancies and
interstitials will be lost. This suggests that the Hall anomaly only exists in a suitable range
of pinnings and magnetic fields, that is, forBl < |B| < Bu with the lower and upper critical
fields determined by pinning as well as by temperature.

Now we study the limiting cases of equations (6) and (7). At low temperatures
the motions of vacancies and interstitials in the vortex lattice are thermal hopping:
ηv = η0eavεv/KBT andηi = η0eaiεv/KBT , with av, ai (presumablyav < ai) numerical factors
of order unity andη0 insensitive to temperature. In this limit, the vacancy (interstitial)
density nv = n0e−bvεv/kBT (ni = n0e−biεv/kBT ), with bv = 1(bi > 1) for the thermally
activated vacancies (interstitials) andbv(bi) = 0 for the pinning centre induced vacancies
(interstitials). In the following we further assume thatηv, ηi � ρsh/2, corresponding to the
Hall angle | tanθ | = |ρyx/ρxx | � 1 common in experiments. Under this assumption, we
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obtain the Hall angle as

tanθ = −q ρsh
2η0

e−(2av+bv)εv/kBT − e−(2ai+bi )εv/kBT

e−(av+bv)εv/kBT + e−(ai+bi )εv/kBT

=


−q ρsh

2η0

γ

2

εv

kBT
kBT > εv

−q ρsh
2η0

e−avεv/kBT kBT < min{1, γ }εv.
(8)

Hereγ = 2ai+bi−2av−bv. The high temperature limitkBT > εv is achieved near the
superconducting transition temperatureTc0, but the thermal creation of a vortex–antivortex
pair is still improbable, because the relevant energy scaleε0 is about ten times bigger than
εv. In the low-temperature limit both longitudinal and Hall resistivities vanish exponentially.
We obtain a scaling relation between them as

ρyx = Aρνxx (9)

with A = −q(ρsh/2η0)
bv/(av+bv)(2e2ρs/hn0)

av/(av+bv), and the power

ν = 2av + bv
av + bv (10)

varying between 1 and 2, depending on the detail of a sample which determines the
numerical factorsav andbv. If all vacancies are produced by pinnings, we havebv = 0 and
ν = 2. In this caseA is independent ofB becausen0 is. In the other limit, if all vacancies
are produced by thermal activations, and ifav � 1, we havebv = 1 andν ' 1. In this
caseA will be independent ofB if η0 is.

Another useful quantity is the Hall conductivityσxy = ρyx/(ρ
2
xx + ρ2

yx). Under the
same assumption ofηv, ηi � ρsh/2 we obtain the Hall conductivity due to vacancies and
interstitials, from equations (6) and (7), as

σxy = −q 2e2

h

ρs

n0

e−(2av+bv)εv/kBT − e−(2ai+bi )εv/kBT[
e−(av+bv)εv/kBT + e−(ai+bi )εv/kBT

]2

=


−q 2e2

h

ρs

n0

γ

4

εv

kBT
kBT > εv

−q 2e2

h

ρs

n0
e+bvεv/kBT kBT < min{1, γ }εv.

(11)

As discussed above, here 06 bv 6 1 andγ ∼ O(1). Near the superconducting transition
temperatureTc0, ρs = ρs0(1− T/Tc0) and εv = εv0(1− T/Tc0) because of the London
penetration depth in equation (2). We may further assumen0 = B/80, with 80 the flux
quantum. From equation (11) we obtain

σxy = α1
(1− T/Tc0)2

B
(12)

with α1 = −q(2e2/h)ρs080γ εv0/4kBTc0. Taking ρs0 = 1021 cm−3, γ = 1, and
εv0/kBTc0 = 50, we find|α1| ∼ 20T µ�−1 cm−1.

Two points should be noted. (1) A naive accounting of the many-body correlation and
pinning may not lead to the sign change in the Hall resistivity: Since vortex interaction
terms cancel each other when summing over all vortices, one would like to conclude that
there is no many-body correlation effect on the sign of the Hall resistivity. If this claim
were correct, the same argument would lead to no sign change for the Hall resistivity in a
hole semiconductor, and no such phenomena as the quantum Hall effect. This absence of
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Hall anomaly is the result of the underestimation of the many-body correlation. (2) There
might be a tendency to mix up antivortices and vacancies. As discussed above, the creation
energy of an antivortex is about ten times larger than that of a vacancy, which makes it
energetically unfavourable. Furthermore, since an antivortex feels the same thermal force
as a vortex,FT = −sφ∇T , it has an opposite sign contribution to that of a vortex for the
Nernst effect, in conflict with experiments [1].

In conclusion, we have demonstrated that within the vortex dynamics equation the
Hall anomaly can be explained. What has been missed in previous models is a proper
consideration of the competition between the many-body correlation and pinning. We have
proposed the model of vacancy motion in a pinned lattice as a concrete realization: the
characteristic energy in the model, the vacancy formation energy, is obtained; and vacancies
move along an applied supercurrent as the origin for the Hall anomaly. The model leads
to an exponential tail and the scaling relation at low temperatures, and no sign change for
the Nernst effect. Near the superconducting transition temperature and for small magnetic
fields the Hall conductivity is found to be proportional to the inverse of the magnetic field
and is quadratic in the temperature different from the transition. For thin enough films the
activation energy in the low-temperature limit has a linear film thickness dependence.
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